NanoTechnology and the Fight Against Terrorism

June 12, 2003
Share

Sharing is Caring

Here we examine an emerging technology that has the promise to become core to Homeland Security.We will look at the role NanoTechnology will have in the fight against terrorism.

What is NanoTechnology?
NanoTechnology involves development of materials (and even complete systems) at the atomic, molecular, or macromolecular levels in the dimension range of approximately 1-500 nanometers.Current research looks to provide detailed understanding of unique properties that materials exhibit at the NanoScale.Current focus of the research is positioned to create and use structures, devices, and systems that have unique and often contradictory properties as well as enhanced functions because of their small and/or intermediate size.NanoTechnology research and development includes control at the NanoScale and integration of NanoScale structures into larger material components, systems, and architectures as well as automated systems for the production of NanoMaterials and the automatic assembly of structures and systems.

History of NanoTechnology
NanoTechnology first gained recognition after Nobel Laureate, Richard Feynman, presented his talk, "There's Plenty of Room at the Bottom" to the American Physical Society in 1959.Activity surrounding NanoTechnology began to slowly increase over the next few decades.In 1988, Eric Drexler taught the first course on NanoTechnology.In that program, he suggested the possibility of nanosized objects that were self-replicating. Slow growth in this area of scientific investigation continued.The next major milestone was when Rice University Professor Richard Smalley won the 1996 Nobel Prize for discovering a new form of carbon: a molecule of sixty carbon atoms (referred to as C60).Today C60 has become one of a growing number of building blocks for a new class of nanosized materials.
The advancements in NanoTechnology really began to accelerate in the late 1990s.NanoTechnology captured the thoughts and imagination of scientists and venture capitalists after an entire issue of Scientific American addressed the promise of this new technology.

Current State of NanoTechnology
Research into NanoMaterials spans a significant spectrum of areas. Advanced material companies are producing innovative products in areas such as coatings, industrial powders, chemicals, and carbon nanotubes. Today, real world application of NanoTechnology exists in commercial business. About two-dozen serious applications of NanoMaterials and process have been fielded ranging from non-scuff floor tile to high strength brackets for running boards on vehicles to high temperature protective materials for spacecraft.While NanoMaterials are a significant portion of today's focus, several other areas are equally as promising.
Click on pie chart for larger Image

Trends & Impact of NanoTechnology
NanoTechnology has the potential to become a more significant revolutionary force for business than the industrial revolution or the information technology revolution.In fact, many believe that the combined impact of both the industrial and information revolution may approach the magnitude of change that could result from the commercialization of NanoTechnology.Currently, NanoTechnology is moving from the basic research stage of its evolution into the applied research stage of technology maturity.Today there are several NanoTechnology companies already being traded on the public marketplace. As this technology evolves and matures, you can expect to see many more companies enter this space.
Today's manufacturing methods are very crude at the molecular level. Casting, grinding, milling, and even lithography move atoms in mass.It is like trying to make things out of LEGO blocks with boxing gloves on your hands.Yes, you can push the LEGO blocks into great heaps and pile them up; but you cannot really snap them together the way you would like.

Future Advances

  • Self-assembling products, systems and materials (self repairing system)
  • Computers billions of times faster (reaching the size barrier of microprocessors)
  • Extremely novel inventions (self-adapting fabrics)
  • Realistic space travel and exploration (more economic)
  • NanoMedical (unique treatment delivery capabilities)
  • Molecular food syntheses (end of famine and starvation)
The big question is "When will this technology enter into the mainstream?" As the graphic below indicates, it will take another eight to ten years. But, rest assured, several breakthroughs and advances will produce significant advantages in materials science, semiconductors, optical communications, and information technology.
Click on graph for larger image

Homeland Security Applications
With the broad reach NanoTechnology has in terms of capabilities, the direct applications for Defense and Homeland Security are only limited by our imagination and how rapidly the technology advances.From shape-shifting armor to fabric that can turn away microbes as well as bullets to new power sources, the defense industries are launching major initiatives and planning for NanoTechnology.The Government is the major source of funding for current NanoTechnology initiatives.Centers of Excellence in NanoTechnology have been established around the country.The basic research in NanoTechnology conducted at these centers will provide the foundation upon which real world applications can be built.Other centers are already concentrating on military application of NanoTechnology.While there are efforts for new and improved weapons based on NanoTechnology, the vast majority of the NanoTechnology research and applied research fall into the support category.

From improved powers sources and batteries to advanced arming fuses the defense industry and homeland security has great interest in how NanoTechnology their capabilities.They believe that NanoTechnology will advance sensors and protective equipment and will greatly assist them in their mission. In fact, current research and development efforts are working on micro power generating devices that can be used in a plethora of applications. If successful these MPG can provide enough energy to power sensors and sensor networks that will be deployed to protect critical infrastructure like water treatment plans, roadways, and bridges.Other applications could include such things as microscopic self-powered reconnaissance and surveillance devices like listening devices, vibrations sensors as well as supplying power to sensor networks.Currently, DoD is funding research in small-scale energetic device development and management.

The lifecycle development and support requirements for NanoMEMS (micro-electro-mechanical systems) in support of advanced applications in munitions and armament systems are critical to advances in weaponry.NanoMEMS has direct implications on integrated circuits, optical switches, pressure sensors, as well as the processes used to produce weapons.However, current thoughts are that NanoMEMS can play a major role in new weapons and intelligence and surveillance. Imagine using NanoMEMS to construct a steam powered electrical generator systems for satellites.Steam is currently used in conventional and nuclear power plants to turn turbines that generate electricity.When used onboard a satellite, as the satellite spins and out of direct sunlight, the steam condenses to liquid; and when it rotates back in the sunlight, the liquid turns to steam again.The micro-size steam power plant would generate enough electricity to operate the unit.The satellite's overall demand for energy would have been greatly reduced because of the use of extremely efficient electronics created with NanoTechnology.In addition, the overall size of the units could be reduced by a factor of ten or more, as well as the weight because of construction practices at the NanoScale.Just think! A satellite so small that it could be launched by what appears to be a large gun in place of conventional rockets.The cost savings would be enormous as well as the difficulty in anyone being able to detect the satellite in orbit.

As mentioned previously, the area that NanoTechnology that holds the most significant promise is in the area of sensors and sensor networks. Hybrid NanoMaterials will produce orders of magnitude improvements in high-selectivity and high-sensitivity sensors for biological and chemical detection. This advanced detection of harmful chemical and biological agents; microsensors for radioactivity, low-power or self-powering consumption security electronics, polymer electronics, nano-optics will provide capabilities that are not available today.
Click above for larger image

Just imagine. In a few years advanced sensor networks self powered with the smarts to communicate from sensor to sensor and have the ability to detect very small amounts of chemicals or biological agents installed in the water supplies across the country.Once a single sensor node detects the presence of one of the agents, it communicates to the others what hit was found and receives their verification.Once verified, the information is communicated to the control sensor that relays the information back to the National Infrastructure Protection Center for immediate action. Other applications like underwater sensor networks to detect the movement of ships into and out of our ports could also be advanced using NanoTechnology. Sensor networks that detect chemical, biological or radiological materials could be built into cargo containers.

The applications of NanoMaterials go far beyond semiconductors and sensors into NanoFabrics.NanoFabrics with unique properties are under development at this time.Properties like decreased receptivity to chemical or biological agents, materials with the ability to expand and contract (like a thermostat) as to exhaust or conserve body heat, or to resist the penetration of a bullet.

Consider that today a soldier going into battle carries about 60 lbs of equipment.A significant part of that weight is in the bullet -proof-vest.What if the weight burden was reduced by 50%? How much more efficient would the soldier be? What if instead of having multiple types of camouflage there was only one uniform that adapted the outer colors to blend into the surroundings? How much physical stress would be relieved if the uniform had that thermostatic characteristic discussed earlier? When the soldier becomes over heated the vents open to allow the flow of air and when the soldier becomes cold the vents close to conserve body heat.In one discussion I had preparing for this article there was even the notion that the materials could sense an injury and automatically constrict like a tourniquet or mast trousers used to treat victims in shock.

One of the early NanoTechnology successes was material that had the characteristics of Gortex with the look and feel of regular wool. Remember of course that Gortex is currently used in bulletproof vests. Today, ballistic resistant materials are heavy and many are extremely brittle. Super strength nanofabrics sandwiched into normal contraction materials are expected to improve blast resistant construction practices making commercial and governmental structures much more resilient against bomb blasts. Bomb resistant containers for cargo and luggage on ships and aircraft, bomb resistant glass for office buildings and government complexes, advanced structural members that have the strength by are pliable to absorb the energy of a blast are all currently being investigated as real world application of NanoTechnology.

Another area of NanoTechnology that is receiving the greatest amount of attention is semiconductors.The ability to further compact the number of transistors in a given space increases the performance of a semiconductor.NanoScale construction practices applied to semiconductors will substantially increase current processing capability and could change the entire industry overnight.NanoTechnology also has significant benefits in opto-electronics and communications.The ability to construct an optical switch on a chip would eliminate a significant amount of complexity and cost of optical networks, not to mention increasing the capacity as well.

Conclusion
While NanoTechnology is based in the research labs today, the advances made to date have illustrated the significant value this technology will bring.The implication on manufacturing techniques, materials manufacturing and the semiconductor industry will be profound.The enhanced characteristics of materials will allow us to create new and innovative devices to protect all of us from terrorism, both directly through safer construction designs and indirectly through intelligence and surveillance.With each passing day, the promise of NanoTechnology becomes increasingly apparent. There is a long way to go before the NanoMaterials production techniques can provide adequate supply of high quality materials at affordable prices. This is one technology that requires close monitoring to properly time the significant opportunities that will be created in it wake.

Share

Sharing is Caring


Geospatial Newsletters

Keep up to date with the latest geospatial trends!

Sign up

Search DM

Get Directions Magazine delivered to you
Please enter a valid email address
Please let us know that you're not a robot by using reCAPTCHA.
Sorry, there was a problem submitting your sign up request. Please try again or email editors@directionsmag.com

Thank You! We'll email you to verify your address.

In order to complete the subscription process, simply check your inbox and click on the link in the email we have just sent you. If it is not there, please check your junk mail folder.

Thank you!

It looks like you're already subscribed.

If you still experience difficulties subscribing to our newsletters, please contact us at editors@directionsmag.com